Ocean acidification

The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. This is having an adverse effect on many important marine species such as corals, oysters, crabs and plankton, and due to the unprecedented rate of acidification they may not have time to evolve mechanisms to cope with the changing chemistry of the ocean.

PML scientists have been at the forefront of developing the science of ocean acidification and pivotal in placing the issues surrounding the science firmly onto the international agenda.

We are working to advance understanding of ocean acidification, from studies of how the chemistry of the ocean is changing to how marine organisms, biodiversity and ecosystems respond to ocean acidification, thus improving knowledge of their resistance or susceptibility to acidification, to help inform future management practices.

A key finding has been that the impact of ocean acidification is strongly dependent on interaction with other stressors associated with global change, notably temperature increases and we have shown that ocean acidification is having a marked effect upon ocean chemistry, most notably the nitrogen cycle and production of climate-relevant trace gases such as DMS and halocarbons.

We are also developing techniques to assess ocean acidification using satellites, which will enable monitoring on a global scale with a relatively low-cost when compared to in situ measurements.

Making a difference

Our research has raised the profile of ocean acidification and informed policy at an international level and has contributed to discussions at several major events including several UNFCCC Conference of the Parties, including providing input to the 2015 Paris agreement. At a national level, we gave extensive written and oral evidence to the recent UK parliamentary inquiry on ocean acidification.

PML also leads the European hub of the Global Ocean Acidification Observing Network.



Atlantic Meridional Transect Ocean Flux from Satellite Campaign (AMT4OceanSatFlux)

Contact: Dr Gavin Tilstone

The AMT4OceanSatFlux project will measure the flux of carbon dioxide (CO2) between the atmosphere and the ocean utilising a state-of-the-art eddy...

Marine Ecosystems Research Programme (MERP)

Marine Ecosystems Research Programme (MERP)

Contact: Dr Paul Somerfield

The Marine Ecosystems Research Programme (MERP) will address key knowledge gaps in marine ecosystem research. By bringing together existing data...

|< <  1 2 3   > >|

You may be interested in...


Ocean acidification: yes, it’s serious

A new international report “An updated synthesis of the impacts of ocean acidification on marine biodiversity” shows beyond doubt that ocean acidification is an issue of serious environmental and policy concern.


Ocean acidification research hub opens at PML

PML has opened the first European hub as part of a global network to observe and assess ocean acidification and its impact upon the world ocean.


PML supports $2 million XPRIZE seeking new sensors to study ocean acidification

PML has been named official supporter of the Wendy Schmidt Ocean Health XPRIZE foundation, following the exciting announcement this week that XPRIZE will be offering a $2-million prize challenge to an innovator who can build cheaper and better pH sensors in the quest for a...

|< <  1 2 3   > >|

Selected key publications

Queiros, AM; Fernandes, JA; Nunes, J; Rastrick, S; Mieszkowska, N; Artioli, Y; Yool, A; Calosi, P; Arvanitidis, C; Findlay, HS; Barange, M; Cheung, W; Widdicombe, S. 2015 Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology, 21 (1). 130-143. 10.1111/gcb.12675

Hopkins, FE; Archer, SD. 2014 Consistent increase in dimethyl sulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters [in special issue: Field investigation of ocean acidification effects in northwest European seas] Biogeosciences Discussions, 11. 2267-2303. 10.5194/bgd-11-2267-2014

Widdicombe, S; Spicer, JI. 2008 Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us?. Journal of Experimental Marine Biology and Ecology, 366. 187 - 197. 10.1016/j.jembe.2008.07.024