Carbon and nutrient cycles

The ocean plays a dominant role in the Earth’s carbon and nutrient cycles.  These cycles are intrinsically linked together and sustain life in the ocean and form a key part of our climate system.

Our long and internationally recognized track record in biogeochemical cycling aims to quantify key processes in the cycling of life sustaining elements in the upper ocean and coastal seas. We use an interdisciplinary approach to study the cycling of carbon and nutrients at interface of biology, chemistry and physics from the sea-surface to the sea-floor. We investigate processes that transform Carbon and nutrients as these are transported from land to sea and across the sea-air interface.

Recent research has concentrated on the pathways, reactions and transformations of nitrogen, carbon and sulphur through the marine biogeochemical system. Particular highlights have been: quantifying ocean acidification across the Atlantic Ocean over the last 20 years; quantifying the impacts of ocean acidification on biogeochemical cycles; quantifying the impacts of multiple stressors upon micro-organisms in the surface ocean, and investigating the impact of variable ratios of micro-nutrients (e.g. iron and zinc) to macro-nutrients (e.g. nitrate and phosphate) on ocean productivity.

We are also investigating the cycling of organic compounds, and our research in this area has focused on the large and complex dissolved organic fraction within seawater and its role in providing microbes with energy, nitrogen and sulphur. Until recently our understanding of the sources, sinks and reaction pathways of ubiquitous organic compounds, such as methanol, osmolytes containing nitrogen, acetone and acetaldehyde was very limited. However, research campaigns studying seasonal cycles and ocean basin variability have allowed us to start unravelling their significance in meeting organic carbon requirements and supporting microbial metabolic processes.

Making a difference

A thorough understanding of carbon and nutrient cycles is essential to enable us to understand how the ocean functions and may respond to future environmental and climate change and will help to improve predictive tools for policy makers and other stakeholders.

Projects

Carbon/Nutrient Dynamics and Fluxes of the Shelf System (CANDYFLOSS)
Completed

Carbon/Nutrient Dynamics and Fluxes of the Shelf System (CANDYFLOSS)

Contact: Dr Andy Rees

The shelf seas are extensive shallow seas which surround large continental land masses with significant importance to people and the Earth system...

War on tiny giants
Completed

War on tiny giants - do viruses impact Pelagibacterales genotype dynamics in the Western English Channel

Contact: Dr Susan Kimmance

The oceans, and in particular coastal regions, are responsible for about half of all global photosynthesis as marine bacteria and algae capture...

Biological cycling of N-osmolytes in the surface ocean (N-osmolytes)
Completed

Biological cycling of N-osmolytes in the surface ocean (N-osmolytes)

Contact: Dr Ruth Airs

In the ocean, nitrogen-containing compounds are thought to be an important part of the soup of compounds that affect cloud formation, and therefore...

|< <  1 2 3   > >|

Other recent news articles

News

Zooplankton unlock a limiting nutrient for ocean productivity

Scientists have discovered that Antarctic krill – a tiny shrimp-like crustacean – plays a key role in fertilising the Southern Ocean with iron, which stimulates the growth of phytoplankton, the microscopic plants at the base of the marine food web. 

News

New modelling tool to enhance global understanding

Open access model allows scientists to predict climate and other anthropogenically influenced environmental changes.

News

Going viral - What happens to infected phytoplankton?

Even phytoplankton, one of the ocean’s smallest but most important groups of organisms, are susceptible to viruses. A new study takes an in-depth look at how these interactions occur.

|< <  1 2 3   > >|

Selected key publications

Dall'Olmo, G; Dingle, J; Polimene, L, Brewin, RJW; Claustre, H. 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nature Geoscience, 9(11), 820-823.

Kitidis, V; Brown, I; Hardman-Mountford, N; Lefevre, N. 2017. Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995-2013); evidence of ocean acidification. Progress in Oceanography, doi:10.1016/j.pocean.2016.1008.1005.

Kitidis, V; Tait, K; Nunes, J; Brown, I; Woodward, EMS; Harris, C; Sabadel, AJM;. Sivyer, DB; Silburn, B; Kroger, S. 2017. Seasonal benthic nitrogen cycling in a temperate shelf sea: the Celtic Sea. Biogeochemistry, 135(1-2), 103-119.