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What Are Salt Marshes?

.........
o

— Major complexes
Isolated sites =500 ha
Small <500 ha, frequent

Small <500 ha, scattered

From: Burd,, 1989,

From: Dijkema et al., 1984

Coastal wetlands, inundated with
marine to brackish waters with
the tide

Contain specialied plant and
animal communities

Distributed throughout the UK
and Europe

Important habitat for many birds
Used extensively for grazing land



s ong? s -8 _“Syst,
olloge g ang - Fo me em
o S o N LM, ta-a Pl'o .
"“Rﬂe:‘d Cas, gy ey gy, Cfiffint Ny o "alys i P e’fles
Flace » g gy ) S Th s D .' Introduclion
" o b, gy ot W, tofan 4y o e Sea-Defence
PV e, e Do " is hos: | SEEET At e s
= | gical changas in the Nerth Sea ragion suggae! .o,
fé‘,g,ivx %QSSP’M o ’ a,ut, Vallie 0 3“ Mars es: elatlve s}s:l?m\‘.rl‘:;ulu‘:mld_xw;m!_nw-mhsf"_cmm ©.1880/00063657 2013 790875
3 pean sedimer
i, IQE V II ': V\;‘ ey Journalof Applied  FORUM
e 101 g 00N Feology 2004 .
40¢10.1088/ neture1 1553 o Iy g5 440448 On the loss of saltmarshes in south-east England and
1 raisa, rsint
— e methods for their restoration
.- . . - ITL] - e
of repair and
Coastal eutrophication as a driver of salt marsh loss Tidal wetland stability in the face of R.G.HUGHES and 0. A L. PARAMOR®
P -] - -
Linda A. Detggan', David Samued Johnson', R, Scott Warren®, Bruce J. Peterson’, John W. Fleeger”, Sergio Fagherazzi® ¥ apy h B d 1 l 1 feleremsed School of Binlogical Sciences, Queen Mary and Wesifield College, Untversity of London, Landan ET 4NS. UK
L olheime ot ey uman impacts and sea-level rise {maili
& Wilfred M. Wollheim' Iy bagun to car
1 va and susta
ir:& Matthew |.. Kirwan' & 1. Patrick Megonigal® :‘suﬂlm&n Summary
0ast
Salt marshes are highly productive coastal wetlands that provide in the nutrient-enriched systems; the remainder was exported in b it el §
imy services such as storm o for coastal  ebbing tidal water'™, The scale of this experiment, which included . managed 1 1. The saltmarshes of south-east England have been eroding rapidly for about the last
portant ecosystem g expel I incraasee
cities, nutrient remaval and carbon sequestration. Despite protec-  creeks, mudflats, tall-form smooth cordgrass (Spartina allermiflora) at Tshe _ . . - - — 50 years, at a continuing rate of about 40 ha year ', with deleterious consequences for
s 1dwid, P ¥ intertwined whereby humans both influence and depend on i '
"'"I il l'"““’l’ ) "m"'::“ "(hm Pl harve ﬁ‘@“ﬂ]d';:::l d’ﬂ;’ “lmt;:“o':"m&:“m} “i'i;hn: lirey h rvices that d pr‘\t;ile;h.t oh watlinds have long been considered vulner- conservation and coastal flood defence. The possible reasons for this erosion and suit-
year whal nutricnt-corick iment. Our study ~ plot-level experiments in individual habitats. en- able 1o sea-level rise, recent work has ident inaling lant growth and iy that ability of methods of saltmarsh fon are di d
. 4 = "
demonstrates that nutrient enrichment, a global problem for  Nutrient enrichment may invoke a series of positive feedbacks by ™ of ““".""h“:‘s?’m esist the iy " level rise. Humans alter the strength of these feedhacks by 2. The prevailing hypothesis that the saltmarsh erosion is due to coastal squeeze, where
cuastal ecosystems’ *, can be a driver of sall marsh loss. We show ing ecosystem processes that affect below-ground dynamics and Ty changing the climalc, matrict inputs, e e e e e p sea walls prevent a d migr of h in response to sea level rise, is
that mutricat kevels commonly assoclated with coastal cutrophica-  creek- bank stability, leaving marshes more susceptible t the erosive gea-leved rise depends largely on how human impacts interact with rapid sea - level rise, and socio-economic factors that 3 o X .
hat o 1 c e g o . t _ & i iy upluneds. - rejected because: (i) as the sea level rises saltmarshes acerete vertically as well, al least al
tion increased leaf decreased the dense,  forces of storms and sea-level rise and gravitational slumping. Tn less iy the rate. and tend e td the rate of risei
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Anaccelerated global nitrogen cyde'™ has greatly increased the flow  smooth cordgrass allocated less. photosynthate to nutrient gathering seabovel rise hecase foedbacks between flooding, plant growthand  Flevation gainoccurs throszh bikogicaland physical feebacks thai cou managed realipnment, where some sea walls are breached to provide new intertidal
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ST Credit: Rich Tea,
Source: BBC News (ht-tps://w~\'Nw.bbc.co.uk/news/uk-england-humber-42449541) (https://www.geograph.org.uk/photo/47745

“* Economic Impact
“ Individual Impact
“» Societal Impact

Risks from storm events that coincide with (large) spring tides




.Inundation and flooding risk due to waves

R . I ==l o ‘;’E
From https://www.cam.ac.uk/research/news/salt-marsh-plants-key-to-reducing-coastal-erosion-and-flooding
“» Coastal wave defence provision, and the roles of salt
marshes described by Moller et al., 1999, 2004, 2014; Yang
etal., 2012
“* Reduce Wave set-up and height




Low Atmospheric Pressure

17 ft
storm tide

s 1§ ft SUrge

2 ft normal
high tide
Mean sea level

Image Credit: NOAA https://www.nhc.noaa.gov/surge/images/stormsurgevsstormtide.jpg

“» Causes greater water depths than normal tidal levels, pushing much further
upstream and landward
“* Pose substantial risks to infrastructure and homes




What Role Does Salt Marsh Vegetation Play in Reducing Storm Flooding

in Estuaries?

The generality and role of marsh vegetation in
moderating:

“*Local-scale effects (longitudinal wave reduction, ;n1YEARSTORM
longitudinal flood level reduction)
“» e.g. Moller et al., 1999;2002;2004;2014, Yang et al., 2012

FULLY VEGETATED

GRAZED NO VEGETATION

—_"
3

“*Regional scale (cumulative effects of marsh
vegetation on hydrodynamics, flood depths and
extents within estuary valleys)

“*Whether vegetation state (i.e. grazed vs

ungrazed) affects flood mitigation potential of
marshes 1 IN 100 YEAR STORM




Generality or context dependence?

Create Wave-Flow-Tide coupled models using the
Hydrodynamic simulation models SWAN and Delft3D-FLOW

Modeled 8 case study estuaries within Wales with different
locations, tidal regimes, shapes and exposures:

Dee Estuary

Loughor Estuary

Glaslyn Estuary

Taf Estuary, South Wales

Towy Estuary

Gwendraeth Estuary

Neath Estuary

Mawddach Estuary




i rd ).
Data Field Collection Data Collation (3™ Party)

Data Pre-processing
Outputs and Delft3D 2D
Simulation




Caveats

“* Vegetation is limited to a single “type” specification

“» The marsh platform, the sedimentary bank that builds up marsh beds, was still present in the Non-
Vegetated scenarios®

“* Models only provide a “snapshot” in time, and should not be used to infer management priorities
for individual case-study estuaries that are presented.

“» Simplification of physics from 3D to 2D

*This allowed us to examine the specific role of vegetation, rather than just the role of salt-marshes as a whole
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Depth at Terrestrial Boundary (m)

3

« Both Fully Vegetated and Grazed marshes are more

effective at reducing localised flooding than the
unvegetated marsh platforms

NV G \

Marsh Width (m)

Depth at Terrestrial Boundary (m)
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*» Small effects, but a general trend in wave
heights reducing upstream.
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“» Waves are initially enhanced by vegetation near the
mouth as vegetation slows down upward movement
of water, leading to deeper water and reducing
wave-lowering friction

“* Further up the estuary this is less important as
depths are low, and vegetation exerts increased
drag, attenuating waves more quickly

25125 0 25 5 7.5 10

SURGE EFFECTS DOMINATE




Flood Damages
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Expected flood damage costs (NPV in million £)

=]

year events

* Interpolate to a Net
Present Value (NPV) using
3.5% discount rate
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Extra flood damage costs from
loss of ungrazed saltmarsh (%)

» Ungrazed saltmarsh reduces damages

by between 55% & -1% » Savings on average:

> Loughor: » Grazed: 9%
> Grazed:£102,907,730 » No Veg: 19%

» No Veg: £ 603,576,232




Vegetation

Take Home
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e Fully Vegetated marshes provide significant storm flood defense, reducing extent by up to
20%

e Local scale reductions in wave height and flooding potential, and estuary level reductions
in flood extents and surge
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¢ Could reduce the effectiveness of marshes to prevent flooding, although some aspects of
flooding benefit from having lower marsh vegetation heights
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* \Vegetation doesn’t only affect flooding by local-scale wave and surge reduction, but has a
marked and large effect on upstream surge attenuation.
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~ Thank You For your Time
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