Ocean acidification

The term ocean acidification is used to describe the ongoing decrease in ocean pH caused by human CO2 emissions, such as the burning of fossil fuels. This is having an adverse effect on many important marine species such as corals, oysters, crabs and plankton, and due to the unprecedented rate of acidification they may not have time to evolve mechanisms to cope with the changing chemistry of the ocean.

PML scientists have been at the forefront of developing the science of ocean acidification and pivotal in placing the issues surrounding the science firmly onto the international agenda.

We are working to advance understanding of ocean acidification, from studies of how the chemistry of the ocean is changing to how marine organisms, biodiversity and ecosystems respond to ocean acidification, thus improving knowledge of their resistance or susceptibility to acidification, to help inform future management practices.

A key finding has been that the impact of ocean acidification is strongly dependent on interaction with other stressors associated with global change, notably temperature increases and we have shown that ocean acidification is having a marked effect upon ocean chemistry, most notably the nitrogen cycle and production of climate-relevant trace gases such as DMS and halocarbons.

We are also developing techniques to assess ocean acidification using satellites, which will enable monitoring on a global scale with a relatively low-cost when compared to in situ measurements.

Making a difference

Our research has raised the profile of ocean acidification and informed policy at an international level and has contributed to discussions at several major events including several UNFCCC Conference of the Parties, including providing input to the 2015 Paris agreement. At a national level, we gave extensive written and oral evidence to the recent UK parliamentary inquiry on ocean acidification.

PML also leads the European hub of the Global Ocean Acidification Observing Network.

Projects

Modelling acidification: UK Ocean Acidification Research Programme
Completed

Modelling acidification: UK Ocean Acidification Research Programme

Contact: Jerry Blackford

The aim of this consortium project (as part of the UK Ocean Acidification Research Programme) was to determine how ocean acidification will impact...

UK Ocean Acidification Research Programme (UKOA)
Completed

UK Ocean Acidification Research Programme (UKOA)

Contact: Dr Carol Turley

The 5 year UK Ocean Acidification Research Programme (UKOA) worked alongside international partner programmes as the UK’s response to...

North East Atlantic hub of the Global Ocean Acidification Observing Network

North East Atlantic hub of the Global Ocean Acidification Observing Network

Contact: Dr Helen Findlay

The North East Atlantic Ocean Acidification Hub is being established to serve European countries that are conducting monitoring, and other OA...

|< <  1 2 3   > >|

You may be interested in...

News

Cod damaged by ocean acidification

PML scientist Dr David Lowe is part of a team which exposes ocean acidification risk to cod hatchlings. 

News

Ocean acidification study offers warnings for marine life habitats

Acidification of the world's oceans could drive a cascading loss of biodiversity in some marine habitats, according to research published this week in Nature Climate Change with contributions from PML.

News

PML scientist joins the UN General Assembly to explore impact of ocean acidification

This week PML's Dr Carol Turley is joining the United Nations General Assembly to consider the impact of increasing ocean acidification on the marine environment and people as the theme of this year’s informal consultative process on oceans.

|< <  1 2 3   > >|

Selected key publications

Queiros, AM; Fernandes, JA; Nunes, J; Rastrick, S; Mieszkowska, N; Artioli, Y; Yool, A; Calosi, P; Arvanitidis, C; Findlay, HS; Barange, M; Cheung, W; Widdicombe, S. 2015 Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biology, 21 (1). 130-143. 10.1111/gcb.12675

Hopkins, FE; Archer, SD. 2014 Consistent increase in dimethyl sulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters [in special issue: Field investigation of ocean acidification effects in northwest European seas] Biogeosciences Discussions, 11. 2267-2303. 10.5194/bgd-11-2267-2014

Widdicombe, S; Spicer, JI. 2008 Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us?. Journal of Experimental Marine Biology and Ecology, 366. 187 - 197. 10.1016/j.jembe.2008.07.024

Related recent publications

  1. Bange, HW; Arévalo-Martínez, DL; de la Paz, Me; Farías, L; Kaiser, J; Kock, A; Law, CS; Rees, AP; Rehder, G; Tortell, PD; Upstill-Goddard, RC; Wilson, ST. 2019 A Harmonized Nitrous Oxide (N2O) Ocean Observation Network for the 21st Century. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00157
    View publication

  2. Stark, JS; Peltzer, ET; Kline, DI; Queiros, AM; Cox, TE; Headley, K; Barry, J; Gazeau, F; Runcie, JW; Widdicombe, S; Milnes, M; Roden, NP; Black, J; Whiteside, S; Johnstone, G; Ingels, J; Shaw, E; Bodrossy, L; Gaitan-Espitia, JD; Kirkwood, W; Gattuso, JP. 2019 Free Ocean CO2 Enrichment (FOCE) experiments: Scientific and technical recommendations for future in situ ocean acidification projects. Progress in Oceanography, 172. 89-107. https://doi.org/10.1016/j.pocean.2019.01.006
    View publication

  3. Ingels, J; dos Santos, G; Hicks, N; Vazquez, YV; Neres, PF; Pontes, LP; Amorim, MN; Román, S; Du, Y; Stahl, H; Somerfield, PJ; Widdicombe, S. 2018 Short-term CO 2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: Results from a flume experiment. Journal of Experimental Marine Biology and Ecology, 502. 211-226. https://doi.org/10.1016/j.jembe.2017.07.012
    View publication

  4. Yuan, X; McCoy, SJ; Du, Y; Widdicombe, S; Hall-Spencer, JM. 2018 Physiological and Behavioral Plasticity of the Sea Cucumber Holothuria forskali (Echinodermata, Holothuroidea) to Acidified Seawater. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.01339
    View publication

  5. Hopkins, FE; Nightingale, PD; Stephens, JA; Moore, CM; Richier, S; Cripps, G; Archer, SD. 2018 Dimethylsulfide (DMS) production in polar oceans is resilient to ocean acidification. Biogeosciences Discussions. https://doi.org/10.5194/bg-2018-55 (In Press)
    View publication

View more publications