Science Topic

Plastic pollution

Plastic pollution is a growing threat to the world’s oceans, posing a serious risk to the health of marine life, ecosystems and society.

The properties of plastic that make it such an attractive material, such as durability, strength and low cost, also make it a lasting problem once it reaches the end of its useful life. Oceanic plastic pollution consists of large pieces of debris, including discarded fishing gear, bottles and plastic bags, but the most ubiquitous type of plastic debris by number are small pieces of plastic, known as microplastics.

Sources of microplastics include fibres from synthetic textiles, microbeads from cosmetics and industrial applications and larger items that have broken down over time. Other forms of microplastic include antifouling paint particles, tyre particles and biodegradables, collectively described as anthropogenic particulates.

Microplastics are ingested by a wide range of marine organisms, including ecologically important and commercially exploited species. Our research has highlighted that these microplastics can adversely affect the health of organisms by limiting their capacity to feed upon natural prey.

PML scientists are at the forefront of urgently needed transdisciplinary research to understand the key drivers of marine plastic risk at multiple spatial and temporal scales. Their work includes assessing the bioavailability and effects of marine microplastics on marine organisms and ecosystems, developing techniques to monitor and model the movement of marine plastic, and assessing the risk of marine plastics to key species, ecosystem services and natural capital.

PML scientists have contributed comprehensive evidence to the UK House of Commons Environmental Audit Committee’s inquiry into "Microplastics and the Marine Environment" and provided input into the Parliamentary Office of Science and Technology (POSTNote) on "Marine Microplastic Pollution".

One of PML’s scientists, Prof Penelope Lindeque gave a presentation to the Parliamentary and Scientific Committee on "The problem of microplastics in our Marine Environment?" to raise awareness of the threat that microplastics pose to the marine environment. The Committee informs members of the Houses of Parliament, scientific bodies, industry and academia on issues where science and politics meet. It also demonstrates the relevance of scientific and technological developments on matters of public interest and to the development of national policy.

Support plastic pollution research

Other Projects

BIO-PLASTIC-RISK: Investigating the environmental prevalence and risk of bioplastics.

TYRE-LOSS: Investigating the environmental prevalence and risk of bioplastics.

Micro-Opt: Developing optimised methods for determing ecotoxicological risk of microplastics

North Atlantic Microplastic Centre (NAMC): Collaborative network aiming to further understanding of risks posed by microplastics to our oceans, human health and society.

Developing NBS to Plastic Pollution: Testing capacity of mussels and macrophytes in stemming the flow of microplastics from source to sea

Exploring the impact of microplastics on food security (PhD project)

Plastico – GCRF project exploring prevalence, risk and solutions to plastic pollution in Chile, Peru, Ecuador and the Galapagos

Pacific Plastics: Science to solutions

Capabilities

  • ecosystem service assessment
  • socio-economic analysis
  • marine ecology
  • ecotoxicology
  • field sampling
  • experimental design
  • microplastics analyses (including FT-IR)
  • method development
  • molecular ecology
  • statistical analysis
  • ultraclean laboratories with FT-IR
  • Olympus SZx16 microscope and imaging system
  • controlled-temperature laboratories, including micro- and mesocosms, and flume tank