Skip to content

Science Topic

Offshore energy

Globally and in particular in UK waters there is a huge development of renewable energy infrastructure mainly led by offshore wind. Whilst the provision of clean energy is vital the degree of offshore activity is leading to concerns about the cumulative impact of this infrastructure on marine systems including other goods and services.

We are investigating new approaches to monitor marine life and assess the socio-economic impacts of renewable energy structures and have used the high resolution model FVCOM to assess and forecast the impacts of these structures on scales from a single turbine to an entire shelf sea.

Using our model we have demonstrated that although the effects of a single turbine are small, cumulatively the impacts of multiple installations can disrupt the flow of water, potentially altering marine ecosystems, and possibly the heights of tides. This could disrupt the benefits we derive from a healthy marine environment where even small changes to the tides can have damaging consequences for coastal habitats and flooding risks, particularly in conjunction with the changes already seen as a result of climate change. Much more research is needed to assess if these impacts are significant or not.

In order to examine the wider costs, benefits and trade-offs of marine renewable energy, we have proposed and tested methods for holistic assessment of the impacts of tidal barrages and offshore wind farms on ecosystem services. Our environmental economists have also determined monetary values for the effects of these technologies on habitats, species and the seascape. We have further examined how the benefits of offshore wind farms could be maximised through co-location with commercial and recreational fishing activities. With the prospect of commercially viable tidal energy coming ever closer, we are examining public perceptions, the role of small scale and community-led initiatives, and the implications of tidal developments for regional economies.

Resources and Links

Modelling at PML website

Selected publications

Bedington, M; Lessin, G; James, M; Somerfield, P. 2022. Assessing ecosystem effects of changes to man​-made infrastructure in the ​North ​Sea. EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11984.

Cazenave, PW; Torres, R; Allen, JI; 2016. Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas. Progress in Oceanography.

Dalton, GJ; Alan, G; Beaumont, N; Georgakaki, A; Hacking, N; Hooper, T; et al. 2015. A review of economic and socio-economic assessment and methodologies of ocean renewable energy: private and public perspectives. Renewable & Sustainable Energy Reviews

Dalton, G; Grant, A; Beaumont, N; Georgakaki, A; Hacking, N; Hooper, T; et al. 2016. Integrated methodologies of economics and socio-economics assessments in ocean renewable energy: private and public perspectives. International Journal of Marine Energy.

Holland, R; Beaumont, N; et al. 2018. Incorporating ecosystem services into the design of future energy systems. Applied Energy

Holland, RA; Scott, K; Hinton, ED; Austen, MC; Barrett, J; Beaumont, N; et al. 2016. Bridging the gap between energy and the environment. Energy Policy.

Hooper, T; Austen, M; Beaumont, N; Heptonstall, P; Holland, RA; Ketsopoulou, I; Taylor, G; Watson, J; Winskel, M. 2018. Do energy scenarios pay sufficient attention to the environment? Lessons from the UK to support improved policy outcomes. Energy Policy

Hooper, T; Hattam, C; Beaumont, N. 2016. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renewable & Sustainable Energy Reviews.

Hooper, T; Hattam, C; Edwards-Jones, A; Beaumont, N; 2020. Public perceptions of tidal energy: Can you predict social acceptability across coastal communities in England? Marine Policy.

Lemasson, AJ; Knights, AM; Thompson, M; Lessin, G; Beaumont, N; Pascoe, C; Queirós, AM; McNeill, L; Schratzberger, M; Somerfield, PJ. 2021. Evidence for the effects of decommissioning man-made structures on marine ecosystems globally: a systematic map protocol. Environmental Evidence.

Lovett, A; Dockerty, TL; Papathanasopoulou, E; Beaumont, NJ; Smith,P. 2015. A framework for assessing the impacts on ecosystem services of energy provision in the UK: An example relating to the production and combustion life cycle of UK produced biomass crops (Short Rotation Coppice and Miscanthus). Biomass and Bioenergy

Papathanasopoulou, E; Beaumont, NJ; Hooper, TL; Nunes, J; Queiros, AM. 2015. Energy systems and their impacts on marine ecosystem services. Renewable and Sustainable Energy Reviews.

Papathanasopoulou E., Queirós, AM; Beaumont, N; Hooper, T; Nunes, J. 2014. What are the local impacts of energy systems on marine biodiversity ecosystem functioning and associated ecosystem services: A systematic map protocol. Environmental Evidence

Papathanasopoulou E., Queirós, AM; Beaumont, N; Hooper, T; Nunes, J. 2016. What evidence exists on the local impacts of energy systems on marine ecosystem services: A systematic map. Environmental Evidence

Watson, J; Bradshaw, M; Froggat, A; Kuzemko, C; Webb, J; Beaumont, N; et al. 2019 Review of Energy Policy. How to ensure the path to Net Zero is a win-win for the global climate, biodiversity and local ecosystems. UK Energy Research Centre (UKERC)

People who work in this area of research

Professor Nicola Beaumont

Head of Science - Sea and Society
nijb12/8/2022 12:34:41 PM@pml.ac.uk

Jerry Blackford

Head of Science: Marine Systems Modelling Group
jcb12/8/2022 12:34:41 PM@pml.ac.uk

Dr Marius Dewar

Modeller
made12/8/2022 12:34:41 PM@pml.ac.uk

Andrew Edwards-Jones

Social Scientist
aej12/8/2022 12:34:41 PM@pml.ac.uk

Dr Elizabeth Gabe-Thomas

Environmental Psychologist
egt12/8/2022 12:34:41 PM@pml.ac.uk

Dr Gennadi Lessin

Marine System Modeller
gle12/8/2022 12:34:41 PM@pml.ac.uk

Dr Ricardo Torres

Systems Modeller Data Assimilation
rito12/8/2022 12:34:41 PM@pml.ac.uk